If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-11700=0
a = 1; b = 40; c = -11700;
Δ = b2-4ac
Δ = 402-4·1·(-11700)
Δ = 48400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{48400}=220$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-220}{2*1}=\frac{-260}{2} =-130 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+220}{2*1}=\frac{180}{2} =90 $
| -8x-9=28x-6(6x-9) | | -v+249=187 | | 4x+2-3x=2x3 | | g-4=19 | | 7+2b=7 | | 4x+2+16=90 | | -16t=23 | | 5+3x=-5x+53 | | 61+9+2x=90 | | y+0.4=5.34 | | 3(-2x-8/6)+7-3=12 | | -16t-23=0 | | (3^2x)=27 | | 2x+11=2x-17 | | (3x-1)^2=27 | | 40=2/5*y | | x10=25 | | 9^2x+1=27^5x+1 | | 2x-4+4x-8=180 | | 4x-3=-3-2x | | v-68=24 | | 2/3x-1/2=x+3/4 | | −36=−0.8k | | v−68=24 | | 25=35b | | -2x^+16x^-24=0 | | h+11.3=−11.3 | | 10x-26x=-12 | | 4(-3x-1)-7x=5x-4 | | r-11=80 | | 3(x—1/2)=5(x+7/2)+4x-1 | | 180+2x-4+4x-8=180 |